I2Regression

Landsat5_old

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

16

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8_old

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Sentinel_2

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Sentinel_2_L3A

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Sentinel_2_S2C

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

arg_train

Name

Default Value

Description

Type

Mandatory

Name

deep_learning_parameters

{}

deep learning parameter description is available here

dict

False

deep_learning_parameters

features

[‘NDVI’, ‘NDWI’, ‘Brightness’]

List of additional features computed

list

False

features

learning_samples_extension

sqlite

learning samples file extension, possible values are ‘sqlite’ and ‘csv’

str

False

learning_samples_extension

random_seed

None

Fix the random seed for random split of reference data

int

False

random_seed

ratio

0.5

Should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split.

float

False

ratio

runs

1

Number of independent runs processed

int

False

runs

sample_augmentation

{‘activate’: False, ‘bins’: 10}

OTB parameters for sample augmentation

dict

False

sample_augmentation

sample_management

None

Absolute path to a CSV file containing samples transfert strategies

str

False

sample_management

sample_selection

{‘sampler’: ‘random’, ‘strategy’: ‘all’}

OTB parameters for sampling the validation set

dict

False

sample_selection

sample_validation

{‘sampler’: ‘random’, ‘strategy’: ‘all’}

OTB parameters for sampling the validation set

dict

False

sample_validation

sampling_validation

False

Enable sampling validation

bool

False

sampling_validation

Notes

features

This parameter enable the computation of the three indices if available for the sensor used.There is no choice for using only one of them

learning_samples_extension

Default value is ‘sqlite’ (faster), in case of the number of features is superior to 2000, as sqlite file doesn’t accept more than 2000 columns, it should be turn to ‘csv’.

random_seed

Fix the random seed used for random split of reference data If set, the results must be the same for a given classifier

runs

Number of independent runs processed. Each run has his own learning samples. Must be an integer greater than 0

sample_augmentation

In supervised classification the balance between class samples is important. There are any ways to manage class balancing in iota2, using refSampleSelection or the classifier’s options to limit the number of samples by class. An other approch is to generate synthetic samples. It is the purpose of this functionality, which is called ‘sample augmentation’.

{'activate':False}
Example
sample_augmentation : {'target_models':['1', '2'],
                      'strategy' : 'jitter',
                      'strategy.jitter.stdfactor' : 10,
                      'strategy.smote.neighbors'  : 5,
                      'samples.strategy' : 'balance',
                      'activate' : True
                      }

iota2 implements an interface to the OTB SampleAugmentation application. There are three methods to generate samples : replicate, jitter and smote.The documentation here explains the difference between these approaches.

samples.strategy specifies how many samples must be created.There are 3 different strategies: - minNumber

To set the minimum number of samples by class required

  • balance

    balance all classes with the same number of samples as the majority one

  • byClass

    augment only some of the classes

Parameters related to minNumber and byClass strategies are
  • samples.strategy.minNumber

    minimum number of samples

  • samples.strategy.byClass

    path to a CSV file containing in first column the class’s label and in the second column the minimum number of samples required.

In the above example, classes of models ‘1’ and ‘2’ will be augmented to the most represented class in the corresponding model using the jitter method.

To perform sample augmentation for regression problems, we return to a configuration similar to classification. For that purpose we create fake classes using the bins parameter. The bins parameter can be an integer in which case the interval of values of the target output variable is divided into bins sub-intervals of equal width, and each sample gets a fake a class corresponding to the number of the interval in which its label fell. bins can also be a list of ascending values used as interval boundaries for assign the classes.

sample_management

The CSV must contain a row per transfert
>>> cat /absolute/path/myRules.csv
    1,2,4,2
Meaning :

source

destination

class name

quantity

1

2

4

2

Currently, setting the ‘random_seed’ parameter has no effect on this workflow.

sample_selection

This field parameters the strategy of polygon sampling. It directly refers to options of OTB’s SampleSelection application.

Example

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'}]
                   }

In the example above, all polygons will be sampled with the 20% ratio. But the polygons which belong to the model 4 will be periodically sampled, instead of the ransom sampling used for other polygons. Notice than per_models key contains a list of strategies. Then we can imagine the following :

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'},
                                 {'target_model':'1',
                                  'sampler':'random',
                                  'strategy', 'byclass',
                                  'strategy.byclass.in', '/path/to/myCSV.csv'
                                 }]
                   }

where the first column of /path/to/myCSV.csv is class label (integer), second one is the required samples number (integer).

sample_validation

This field parameters the strategy of polygon sampling. It directly refers to options of OTB’s SampleSelection application.

Example

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'}]
                   }

In the example above, all polygons will be sampled with the 20% ratio. But the polygons which belong to the model 4 will be periodically sampled, instead of the ransom sampling used for other polygons. Notice than per_models key contains a list of strategies. Then we can imagine the following :

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'},
                                 {'target_model':'1',
                                  'sampler':'random',
                                  'strategy', 'byclass',
                                  'strategy.byclass.in', '/path/to/myCSV.csv'
                                 }]
                   }

where the first column of /path/to/myCSV.csv is class label (integer), second one is the required samples number (integer).

builders

Name

Default Value

Description

Type

Mandatory

Name

builders_class_name

[‘I2Classification’]

The name of the class defining the builder

list

False

builders_class_name

builders_paths

/path/to/iota2/sources

The path to user builders

str

False

builders_paths

Notes

builders_class_name

Available builders are : ‘I2Classification’, ‘I2FeaturesMap’ and ‘I2Obia’

builders_paths

If not indicated, the iota2 source directory is used: */iota2/sequence_builders/

chain

Name

Default Value

Description

Type

Mandatory

Name

check_inputs

True

Enable the inputs verification

bool

False

check_inputs

cloud_threshold

0

Threshold to consider that a pixel is valid

int

False

cloud_threshold

data_field

None

Field name indicating classes labels in ground_thruth

str

True

data_field

first_step

None

The step group name indicating where the chain start

str

False

first_step

ground_truth

None

Absolute path to reference data

str

True

ground_truth

last_step

None

The step group name indicating where the chain ends

str

False

last_step

list_tile

None

List of tile to process, separated by space

str

True

list_tile

logger_level

INFO

Set the logger level: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL

str

False

logger_level

minimum_required_dates

2

required minimum number of available dates for each sensor

int

False

minimum_required_dates

output_path

None

Absolute path to the output directory

str

True

output_path

proj

None

The projection wanted. Format EPSG:XXXX is mandatory

str

True

proj

region_field

region

The column name for region indicator in`region_path` file

str

False

region_field

region_path

None

Absolute path to a region vector file

str

False

region_path

remove_output_path

True

Before the launch of iota2, remove the content of output_path

bool

False

remove_output_path

s1_path

None

Absolute path to Sentinel-1 configuration file

str

False

s1_path

s2_l3a_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

False

s2_l3a_output_path

s2_l3a_path

None

Absolute path to Sentinel-2 L3A images (THEIA format)

str

False

s2_l3a_path

s2_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

False

s2_output_path

s2_path

None

Absolute path to Sentinel-2 images (THEIA format)

str

False

s2_path

s2_s2c_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

False

s2_s2c_output_path

s2_s2c_path

None

Absolute path to Sentinel-2 images (Sen2Cor format)

str

False

s2_s2c_path

spatial_resolution

[]

Output spatial resolution

list or scalar

False

spatial_resolution

Notes

check_inputs

Enable the inputs verification. It can take a lot of time for large dataset. Check if region intersect reference data for instance

cloud_threshold

Indicates the threshold for a polygon to be used for learning. It use the validity count, which is incremented if a cloud, a cloud shadow or a saturated pixel is detected

data_field

All the labels values must be different to 0. It is recommended to use a continuous range of values but it is not mandatory. Keep in mind that the final product type is detected according to the maximum label value. Try to keep values between 1 and 255 to avoid heavy products.

output_path

Absolute path to the output directory.It is recommended to have one directory per run of the chain

region_field

This column in the database must contains string which can be converted into integers. For instance ‘1_2’ does not match this condition. It is mandatory that the region identifiers are > 0.

remove_output_path

Before the launch of iota2, remove the content of output_path. Only if the first_step is init and the folder name is valid

spatial_resolution

The spatial resolution expected.It can be provided as integer or float,or as a list containing two values for non squared resolution

external_features

Name

Default Value

Description

Type

Mandatory

Name

concat_mode

True

enable the use of all features

bool

False

concat_mode

exogeneous_data

None

Path to a Geotiff file containing additional data to be used in external features

str

False

exogeneous_data

external_features_flag

False

enable the external features mode

bool

False

external_features_flag

functions

None

function list to be used to compute features

str/list

False

functions

module

/path/to/iota2/sources

absolute path for user source code

str

False

module

no_data_value

-10000

value considered as no_data in features map mosaic (‘I2FeaturesMap’ builder name)

int

False

no_data_value

output_name

None

temporary chunks are written using this name as prefix

str

False

output_name

Notes

concat_mode

if disabled, only external features are used in the whole processing

exogeneous_data

If the =exogeneous_data= contains ‘$TILE’, it will be replaced by the tile name being processed.If you want to reproject your data on given tiles, you can use the =split_raster_into_tiles.py= command line tool.

Usage: =split_raster_into_tiles.py –help=.

functions

Can be a string of space-separated function namesCan be a list of either strings of function nameor lists of one function name and one argument mapping

iota2_feature_extraction

Name

Default Value

Description

Type

Mandatory

Name

acor_feat

False

Apply atmospherically corrected features

bool

False

acor_feat

copy_input

True

use spectral bands as features

bool

False

copy_input

extract_bands

False

bool

False

extract_bands

keep_duplicates

True

use ‘rel_refl’ can generate duplicated feature (ie: NDVI), set to False remove these duplicated features

bool

False

keep_duplicates

rel_refl

False

compute relative reflectances by the red band

bool

False

rel_refl

Notes

acor_feat

Apply atmospherically corrected featuresas explained at : http://www.cesbio.ups-tlse.fr/multitemp/?p=12746

multi_run_fusion

Name

Default Value

Description

Type

Mandatory

Name

fusionof_all_samples_validation

False

Enable the use of all reference data to evaluate the fusion raster

bool

False

fusionof_all_samples_validation

keep_runs_results

True

bool

False

keep_runs_results

merge_run

False

Enable the fusion of regression mode, merging all run in a unique result.

bool

False

merge_run

merge_run_method

mean

Indicate the fusion of regression method: ‘mean’ or ‘median’

str

False

merge_run_method

merge_run_ratio

0.1

Percentage of samples to use in order to evaluate the fusion raster

float

False

merge_run_ratio

Notes

fusionof_all_samples_validation

If the fusion mode is enabled, enable the use of all reference data samples for validation

keep_runs_results

merge_run_method

In addition to the regression fusion map, a confidence map is also produced. If the merging method is the mean then the method used to calculate the confidence map will be the standard deviation,if the median is chosen to merge the maps from the different runs then the method used to calculate the confidence map will be th median absolute deviation.

pretrained_model

Name

Default Value

Description

Type

Mandatory

Name

boundary_buffer

None

List of boundary buffer size

list

False

boundary_buffer

function

None

Predict function name

str

False

function

mode

None

Algorythm nature (classification or regression)

str

False

mode

model

None

Serialized object containing the model

str

False

model

module

/path/to/iota2/sources

Absolute path to the python module

str

False

module

Notes

function

This function must have the imposed signature. It not accept any others parameters. All model dedicated parameters must be stored alongside the model.

mode

The python module must contains the predict function It must handle all the potential dependencies and import related to the correct model instanciation

model

In the configuration file, the mandatory keys $REGION and $SEED must be present as they are replaced by iota2. In case of only one region, the region value is set to 1. Look at the documentation about the model constraint.

module

The python module must contains the predict function It must handle all the potential dependencies and import related to the correct model instanciation

python_data_managing

Name

Default Value

Description

Type

Mandatory

Name

chunk_size_mode

split_number

The chunk split mode, currently the choice is ‘split_number’

str

False

chunk_size_mode

chunk_size_x

50

number of cols for one chunk

int

False

chunk_size_x

chunk_size_y

50

number of rows for one chunk

int

False

chunk_size_y

data_mode_access

gapfilled

choose which data can be accessed in custom features

str

False

data_mode_access

fill_missing_dates

False

fill raw data with no data if dates are missing

bool

False

fill_missing_dates

max_nn_inference_size

None

maximum batch inference size

int

False

max_nn_inference_size

number_of_chunks

50

the expected number of chunks

int

False

number_of_chunks

padding_size_x

0

The padding for chunk

int

False

padding_size_x

padding_size_y

0

The padding for chunk

int

False

padding_size_y

Notes

data_mode_access

Three values are allowed:

  • gapfilled: give access only the gapfilled data

  • raw: gives access only the original raw data

  • both: provides access to both data

..Notes:: Data are spatialy resampled, these parameters concern only temporal interpolation

fill_missing_dates

If raw data access is enabled, this option considers all unique dates for all tiles and identify which dates are missing for each tile. A missing date is filled using a no data constant value.Cloud or saturation are not corrected, but masks are provided Masks contain three value: 0 for valid data, 1 for cloudy or saturated pixels, 2 for a missing date

max_nn_inference_size

Involved if a neural network inference is performed. If not set (None), the inference size will be the same as the one used during the learning stage

scikit_models_parameters

Name

Default Value

Description

Type

Mandatory

Name

cross_validation_folds

5

the number of k-folds

int

False

cross_validation_folds

cross_validation_grouped

False

bool

False

cross_validation_grouped

keyword_arguments

{}

keyword arguments to be passed to model

dict

False

keyword_arguments

model_type

None

machine learning algorthm’s name

str

False

model_type

standardization

True

bool

False

standardization

Notes

keyword_arguments

keyword arguments to be passed to model

model_type

Models comming from scikit-learn are use if scikit_models_parameters.model_type is different from None. More informations about how to use scikit-learn is available at iota2 and scikit-learn machine learning algorithms.

sensors_data_interpolation

Name

Default Value

Description

Type

Mandatory

Name

auto_date

True

Enable the use of start_date and end_date

bool

False

auto_date

use_gapfilling

True

enable the use of gapfilling (clouds/temporal interpolation)

bool

False

use_gapfilling

write_outputs

False

write temporary files

bool

False

write_outputs

Notes

auto_date

If True, iota2 will automatically guess the first and the last interpolation date. Else, start_date and end_date of each sensors will be used

write_outputs

Write the time series before and after gapfilling, the mask time series, and also the feature time series. This option required a large amount of free disk space.

task_retry_limits

Name

Default Value

Description

Type

Mandatory

Name

allowed_retry

0

allow dask to retry a failed job N times

int

False

allowed_retry

maximum_cpu

4

the maximum number of CPU available

int

False

maximum_cpu

maximum_ram

16.0

the maximum amount of RAM available. (gB)

float

False

maximum_ram

Notes

maximum_cpu

the amount of cpu will be doubled if the task is killed due to ram overconsumption until maximum_cpu or allowed_retry are reach

maximum_ram

the amount of RAM will be doubled if the task is killed due to ram overconsumption until maximum_ram or allowed_retry are reach