I2Obia

Landsat5_old

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

16

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8_old

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8_usgs

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’, ‘B8’, ‘B9’, ‘B10’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

16

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8_usgs_infrared

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

enable_sensor_gapfilling

False

Enable or disable gapfilling for landsat 8 and 9 IR data

bool

False

enable_sensor_gapfilling

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B10’, ‘B11’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

16

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8_usgs_optical

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

enable_sensor_gapfilling

True

Enable or disable gapfilling for landsat 8 and 9 optical data

bool

False

enable_sensor_gapfilling

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

16

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Landsat8_usgs_thermal

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

enable_sensor_gapfilling

False

Enable or disable gapfilling for landsat 8 and 9 thermal data(temperature and emissivity)

bool

False

enable_sensor_gapfilling

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B10’, ‘EMIS’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

16

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Sentinel_2

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Sentinel_2_L3A

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

Sentinel_2_S2C

Name

Default Value

Description

Type

Mandatory

Name

additional_features

OTB’s bandmath expressions, separated by comma

str

False

additional_features

end_date

The last date of interpolated image time series : YYYYMMDD format

str

False

end_date

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

False

keep_bands

start_date

The first date of interpolated image time series : YYYYMMDD format

str

False

start_date

temporal_resolution

10

The temporal gap between two interpolations

int

False

temporal_resolution

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

False

write_reproject_resampled_input_dates_stack

Notes

end_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

keep_bands

WARNING

For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:

iota2_feature_extraction :
{
  'extract_bands':True,
}

start_date

WARNING

For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:

sensors_data_interpolation :
{
  'auto_date':False,
}

arg_train

Name

Default Value

Description

Type

Mandatory

Name

classifier

None

otb classification algorithm

str

False

classifier

otb_classifier_options

None

OTB option for classifier.If None, the OTB default values are used

dict

False

otb_classifier_options

random_seed

None

Fix the random seed for random split of reference data

int

False

random_seed

ratio

0.5

Should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split.

float

False

ratio

runs

1

Number of independent runs processed

int

False

runs

sample_selection

{‘sampler’: ‘random’, ‘strategy’: ‘all’}

OTB parameters for sampling the validation set

dict

False

sample_selection

sample_validation

{‘sampler’: ‘random’, ‘strategy’: ‘all’}

OTB parameters for sampling the validation set

dict

False

sample_validation

split_ground_truth

True

Enable the split of reference data

bool

False

split_ground_truth

validity_threshold

1

threshold above which a training pixel is considered valid

int

False

validity_threshold

Notes

otb_classifier_options

This parameter is a dictionnary which accepts all OTB application parameters. To know the exhaustive parameter list use otbcli_TrainVectorClassifier in a terminal or look at the OTB documentation

random_seed

Fix the random seed used for random split of reference data If set, the results must be the same for a given classifier

runs

Number of independent runs processed. Each run has his own learning samples. Must be an integer greater than 0

sample_selection

This field parameters the strategy of polygon sampling. It directly refers to options of OTB’s SampleSelection application.

Example

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'}]
                   }

In the example above, all polygons will be sampled with the 20% ratio. But the polygons which belong to the model 4 will be periodically sampled, instead of the ransom sampling used for other polygons. Notice than per_models key contains a list of strategies. Then we can imagine the following :

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'},
                                 {'target_model':'1',
                                  'sampler':'random',
                                  'strategy', 'byclass',
                                  'strategy.byclass.in', '/path/to/myCSV.csv'
                                 }]
                   }

where the first column of /path/to/myCSV.csv is class label (integer), second one is the required samples number (integer).

sample_validation

This field parameters the strategy of polygon sampling. It directly refers to options of OTB’s SampleSelection application.

Example

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'}]
                   }

In the example above, all polygons will be sampled with the 20% ratio. But the polygons which belong to the model 4 will be periodically sampled, instead of the ransom sampling used for other polygons. Notice than per_models key contains a list of strategies. Then we can imagine the following :

sample_selection : {'sampler':'random',
                   'strategy':'percent',
                   'strategy.percent.p':0.2,
                   'per_models':[{'target_model':'4',
                                  'sampler':'periodic'},
                                 {'target_model':'1',
                                  'sampler':'random',
                                  'strategy', 'byclass',
                                  'strategy.byclass.in', '/path/to/myCSV.csv'
                                 }]
                   }

where the first column of /path/to/myCSV.csv is class label (integer), second one is the required samples number (integer).

split_ground_truth

If set to False, the chain use all polygons for both training and validation

builders

Name

Default Value

Description

Type

Mandatory

Name

builders_class_name

[‘I2Classification’]

The name of the class defining the builder

list

False

builders_class_name

builders_paths

/path/to/iota2/sources

The path to user builders

str

False

builders_paths

Notes

builders_class_name

Available builders are : ‘I2Classification’, ‘I2FeaturesMap’ and ‘I2Obia’

builders_paths

If not indicated, the iota2 source directory is used: */iota2/sequence_builders/

chain

Name

Default Value

Description

Type

Mandatory

Name

check_inputs

True

Enable the inputs verification

bool

False

check_inputs

cloud_threshold

0

Threshold to consider that a pixel is valid

int

False

cloud_threshold

color_table

None

Absolute path to the file that links the classes and their colours

str

True

color_table

compression_algorithm

ZSTD

Set the gdal compression algorithm to use: NONE, LZW, ZSTD (default).All rasters write with OTB will be compress with the chosen algorithm.

str

False

compression_algorithm

compression_predictor

2

Set the predictor for LZW and ZSTD compression: 1 (no predictor), 2 (horizontal differencing, default)

int

False

compression_predictor

data_field

None

Field name indicating classes labels in ground_thruth

str

True

data_field

first_step

None

The step group name indicating where the chain start

str

False

first_step

ground_truth

None

Absolute path to reference data

str

True

ground_truth

l5_path_old

None

Absolute path to Landsat-5 images coming from old THEIA format (D*H*)

str

False

l5_path_old

l8_path

None

Absolute path to Landsat-8 images comingfrom new tiled THEIA data

str

False

l8_path

l8_path_old

None

Absolute path to Landsat-8 images coming from old THEIA format (D*H*)

str

False

l8_path_old

l8_usgs_infrared_path

None

Absolute path to Landsat-8 images coming from USGS data

str

False

l8_usgs_infrared_path

l8_usgs_optical_path

None

Absolute path to Landsat-8 images coming from USGS data

str

False

l8_usgs_optical_path

l8_usgs_path

None

Absolute path to Landsat-8 images coming from USGS data

str

False

l8_usgs_path

l8_usgs_thermal_path

None

Absolute path to Landsat-8 images coming from USGS data

str

False

l8_usgs_thermal_path

last_step

None

The step group name indicating where the chain ends

str

False

last_step

list_tile

None

List of tile to process, separated by space

str

True

list_tile

logger_level

INFO

Set the logger level: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL

str

False

logger_level

minimum_required_dates

2

required minimum number of available dates for each sensor

int

False

minimum_required_dates

nomenclature_path

None

Absolute path to the nomenclature description file

str

True

nomenclature_path

output_path

None

Absolute path to the output directory

str

True

output_path

proj

None

The projection wanted. Format EPSG:XXXX is mandatory

str

True

proj

region_field

region

The column name for region indicator in`region_path` file

str

False

region_field

region_path

None

Absolute path to a region vector file

str

False

region_path

remove_output_path

True

Before the launch of iota2, remove the content of output_path

bool

False

remove_output_path

s1_path

None

Absolute path to Sentinel-1 configuration file

str

False

s1_path

s2_l3a_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

False

s2_l3a_output_path

s2_l3a_path

None

Absolute path to Sentinel-2 L3A images (THEIA format)

str

False

s2_l3a_path

s2_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

False

s2_output_path

s2_path

None

Absolute path to Sentinel-2 images (THEIA format)

str

False

s2_path

s2_s2c_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

False

s2_s2c_output_path

s2_s2c_path

None

Absolute path to Sentinel-2 images (Sen2Cor format)

str

False

s2_s2c_path

spatial_resolution

[]

Output spatial resolution

list or scalar

False

spatial_resolution

user_feat_path

None

Absolute path to the user’s features path

str

False

user_feat_path

Notes

check_inputs

Enable the inputs verification. It can take a lot of time for large dataset. Check if region intersect reference data for instance

cloud_threshold

Indicates the threshold for a polygon to be used for learning. It use the validity count, which is incremented if a cloud, a cloud shadow or a saturated pixel is detected

compression_predictor

It has been noted that in some cases, once the features are written to disk, the raster file may be empty. If this is the case, please change the predictor to 1 or 3.

data_field

All the labels values must be different to 0. It is recommended to use a continuous range of values but it is not mandatory. Keep in mind that the final product type is detected according to the maximum label value. Try to keep values between 1 and 255 to avoid heavy products.

output_path

Absolute path to the output directory.It is recommended to have one directory per run of the chain

region_field

This column in the database must contains string which can be converted into integers. For instance ‘1_2’ does not match this condition. It is mandatory that the region identifiers are > 0.

remove_output_path

Before the launch of iota2, remove the content of output_path. Only if the first_step is init and the folder name is valid

spatial_resolution

The spatial resolution expected.It can be provided as integer or float,or as a list containing two values for non squared resolution

user_feat_path

Absolute path to the user’s features path. They must be stored by tiles

obia

Name

Default Value

Description

Type

Mandatory

Name

buffer_size

None

define the working size batch in number of pixels

int

False

buffer_size

full_learn_segment

False

enable the use of entire segment for learning

bool

False

full_learn_segment

obia_segmentation_path

None

filename for input segmentation

str

False

obia_segmentation_path

region_priority

None

define an order for region intersection

list

False

region_priority

stats_used

[‘mean’]

list of stats used for train and classification

list

False

stats_used

Notes

buffer_size

this parameter is used to avoid memory issue.In case of a large temporal series,i.e one year of Sentinel2 images a recommended size is 2000.For lower number of date, the buffer size can be increased.If buffer_size is larger than the image size, the whole image will be processed in one time.

full_learn_segment

if True: keep each segment which intersect the learning samples. If False, the segments are clipped with learning polygon shape

obia_segmentation_path

If parameter is None then a segmentation for each tile is processed using SLIC algorithm

region_priority

if a list is provided, the list order is used instead of the numeric order.This option can be used in case of very unbalanced region size.

stats_used

this list accepts only five values: mean, count, min, max, std The choice of statistics used should be considered in relation to the number of dates used.Because of the constraints on vector formats, one must think about the number of features this creates: nb_stats_choosen * nb_bands * nb_dates. Too many spectral bands can cause an error in the execution of the string.

pretrained_model

Name

Default Value

Description

Type

Mandatory

Name

boundary_buffer

None

List of boundary buffer size

list

False

boundary_buffer

function

None

Predict function name

str

False

function

mode

None

Algorythm nature (classification or regression)

str

False

mode

model

None

Serialized object containing the model

str

False

model

module

/path/to/iota2/sources

Absolute path to the python module

str

False

module

Notes

function

This function must have the imposed signature. It not accept any others parameters. All model dedicated parameters must be stored alongside the model.

mode

The python module must contains the predict function It must handle all the potential dependencies and import related to the correct model instanciation

model

In the configuration file, the mandatory keys $REGION and $SEED must be present as they are replaced by iota2. In case of only one region, the region value is set to 1. Look at the documentation about the model constraint.

module

The python module must contains the predict function It must handle all the potential dependencies and import related to the correct model instanciation

sensors_data_interpolation

Name

Default Value

Description

Type

Mandatory

Name

auto_date

True

Enable the use of start_date and end_date

bool

False

auto_date

use_additional_features

False

enable the use of additional features

bool

False

use_additional_features

use_gapfilling

True

enable the use of gapfilling (clouds/temporal interpolation)

bool

False

use_gapfilling

write_outputs

False

write temporary files

bool

False

write_outputs

Notes

auto_date

If True, iota2 will automatically guess the first and the last interpolation date. Else, start_date and end_date of each sensors will be used

write_outputs

Write the time series before and after gapfilling, the mask time series, and also the feature time series. This option required a large amount of free disk space.

simplification

Name

Default Value

Description

Type

Mandatory

Name

gridsize

None

number of lines and columns of the serialization process

int

False

gridsize

inland

None

inland water limit shapefile

str

False

inland

nomenclature

None

configuration file which describe nomenclature

configuration file which describe nomenclature

False

nomenclature

rssize

20

Resampling size of input classification raster (projection unit)

int

False

rssize

umc1

None

MMU for the first regularization

int

False

umc1

umc2

None

MMU for the second regularization

int

False

umc2

Notes

gridsize

This parameter is useful only for large areas for which vectorization process can not be executed (memory limitation). By ‘serialization’, we mean parallel vectorization processes. If not None, regularized classification raster is splitted in gridsize x gridsize rasters

inland

to vectorize only inland waters, and not unnecessary sea water areas

nomenclature

This configuration file includes code, color, description and vector field alias of each class

Classes:
{
        Level1:
        {
                "Urbain":
                {
                code:100
                alias:"Urbain"
                color:"#b106b1"
                }
                ...
        }
        Level2:
        {
               "Urbain dense":
               {
               code:1
               alias:"UrbainDens"
               color:"#ff00ff"
               parent:100
               }
               ...
        }
}

rssize

OSO-like vectorization requires a resampling step in order to regularize and decrease raster polygons number, If None, classification is not resampled

umc1

It is an interface of parameter ‘-st’ of gdal_sieve.py function. If None, classification is not regularized

umc2

OSO-like vectorization process requires 2 successive regularization, if you need a single regularization, let this parameter to None

slurm

Name

Default Value

Description

Type

Mandatory

Name

account

None

Feed the sbatch parameter ‘account’

str

False

account

Notes

account

The section ‘slurm’ is only available once the Slurm orchestrator is involved in jobs submission.

task_retry_limits

Name

Default Value

Description

Type

Mandatory

Name

allowed_retry

0

allow dask to retry a failed job N times

int

False

allowed_retry

maximum_cpu

4

the maximum number of CPU available

int

False

maximum_cpu

maximum_ram

16.0

the maximum amount of RAM available. (gB)

float

False

maximum_ram

Notes

maximum_cpu

the amount of cpu will be doubled if the task is killed due to ram overconsumption until maximum_cpu or allowed_retry are reach

maximum_ram

the amount of RAM will be doubled if the task is killed due to ram overconsumption until maximum_ram or allowed_retry are reach

userFeat

Name

Default Value

Description

Type

Mandatory

Name

arbo

/*

input folder hierarchy

str

False

arbo

patterns

ALT,ASP,SLP

key name for detect the input images

str

False

patterns