I2Obia
Landsat5_old
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
10 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Landsat8
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
16 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Landsat8_old
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
10 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Landsat8_usgs
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’, ‘B8’, ‘B9’, ‘B10’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
16 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Landsat8_usgs_infrared
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
enable_sensor_gapfilling |
False |
Enable or disable gapfilling for landsat 8 and 9 IR data |
bool |
False |
enable_sensor_gapfilling |
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B10’, ‘B11’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
16 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Landsat8_usgs_optical
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
enable_sensor_gapfilling |
True |
Enable or disable gapfilling for landsat 8 and 9 optical data |
bool |
False |
enable_sensor_gapfilling |
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
16 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Landsat8_usgs_thermal
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
enable_sensor_gapfilling |
False |
Enable or disable gapfilling for landsat 8 and 9 thermal data(temperature and emissivity) |
bool |
False |
enable_sensor_gapfilling |
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B10’, ‘EMIS’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
16 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Sentinel_2
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
10 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Sentinel_2_L3A
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
10 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
Sentinel_2_S2C
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
additional_features |
OTB’s bandmath expressions, separated by comma |
str |
False |
additional_features |
|
The last date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’] |
The list of spectral bands used for classification |
list |
False |
||
The first date of interpolated image time series : YYYYMMDD format |
str |
False |
|||
temporal_resolution |
10 |
The temporal gap between two interpolations |
int |
False |
temporal_resolution |
write_reproject_resampled_input_dates_stack |
True |
flag to write of resampled stack image for each date |
bool |
False |
write_reproject_resampled_input_dates_stack |
Notes
end_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
keep_bands
WARNING
For this parameter to be taken into account,the extract_bands variable in the iota2_feature_extraction section must also be set to True:
iota2_feature_extraction : { 'extract_bands':True, }
start_date
WARNING
For this parameter to be taken into account,the auto_date variable in the sensors_data_interpolationsection must also be set to False:
sensors_data_interpolation : { 'auto_date':False, }
arg_train
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
classifier |
None |
otb classification algorithm |
str |
False |
classifier |
None |
OTB option for classifier.If None, the OTB default values are used |
dict |
False |
||
None |
Fix the random seed for random split of reference data |
int |
False |
||
ratio |
0.5 |
Should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. |
float |
False |
ratio |
1 |
Number of independent runs processed |
int |
False |
||
{‘sampler’: ‘random’, ‘strategy’: ‘all’} |
OTB parameters for sampling the validation set |
dict |
False |
||
{‘sampler’: ‘random’, ‘strategy’: ‘all’} |
OTB parameters for sampling the validation set |
dict |
False |
||
True |
Enable the split of reference data |
bool |
False |
||
validity_threshold |
1 |
threshold above which a training pixel is considered valid |
int |
False |
validity_threshold |
Notes
otb_classifier_options
This parameter is a dictionnary which accepts all OTB application parameters. To know the exhaustive parameter list use otbcli_TrainVectorClassifier in a terminal or look at the OTB documentation
random_seed
Fix the random seed used for random split of reference data If set, the results must be the same for a given classifier
runs
Number of independent runs processed. Each run has his own learning samples. Must be an integer greater than 0
sample_selection
This field parameters the strategy of polygon sampling. It directly refers to options of OTB’s SampleSelection application.
Example
sample_selection : {'sampler':'random', 'strategy':'percent', 'strategy.percent.p':0.2, 'per_models':[{'target_model':'4', 'sampler':'periodic'}] }
In the example above, all polygons will be sampled with the 20% ratio. But the polygons which belong to the model 4 will be periodically sampled, instead of the ransom sampling used for other polygons.
Notice than per_models
key contains a list of strategies. Then we can imagine the following :
sample_selection : {'sampler':'random', 'strategy':'percent', 'strategy.percent.p':0.2, 'per_models':[{'target_model':'4', 'sampler':'periodic'}, {'target_model':'1', 'sampler':'random', 'strategy', 'byclass', 'strategy.byclass.in', '/path/to/myCSV.csv' }] }where the first column of /path/to/myCSV.csv is class label (integer), second one is the required samples number (integer).
sample_validation
This field parameters the strategy of polygon sampling. It directly refers to options of OTB’s SampleSelection application.
Example
sample_selection : {'sampler':'random', 'strategy':'percent', 'strategy.percent.p':0.2, 'per_models':[{'target_model':'4', 'sampler':'periodic'}] }
In the example above, all polygons will be sampled with the 20% ratio. But the polygons which belong to the model 4 will be periodically sampled, instead of the ransom sampling used for other polygons.
Notice than per_models
key contains a list of strategies. Then we can imagine the following :
sample_selection : {'sampler':'random', 'strategy':'percent', 'strategy.percent.p':0.2, 'per_models':[{'target_model':'4', 'sampler':'periodic'}, {'target_model':'1', 'sampler':'random', 'strategy', 'byclass', 'strategy.byclass.in', '/path/to/myCSV.csv' }] }where the first column of /path/to/myCSV.csv is class label (integer), second one is the required samples number (integer).
split_ground_truth
If set to False, the chain use all polygons for both training and validation
builders
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
[‘I2Classification’] |
The name of the class defining the builder |
list |
False |
||
/path/to/iota2/sources |
The path to user builders |
str |
False |
Notes
builders_class_name
Available builders are : ‘I2Classification’, ‘I2FeaturesMap’ and ‘I2Obia’
builders_paths
If not indicated, the iota2 source directory is used: */iota2/sequence_builders/
chain
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
True |
Enable the inputs verification |
bool |
False |
||
0 |
Threshold to consider that a pixel is valid |
int |
False |
||
color_table |
None |
Absolute path to the file that links the classes and their colours |
str |
True |
color_table |
compression_algorithm |
ZSTD |
Set the gdal compression algorithm to use: NONE, LZW, ZSTD (default).All rasters write with OTB will be compress with the chosen algorithm. |
str |
False |
compression_algorithm |
2 |
Set the predictor for LZW and ZSTD compression: 1 (no predictor), 2 (horizontal differencing, default) |
int |
False |
||
None |
Field name indicating classes labels in ground_thruth |
str |
True |
||
first_step |
None |
The step group name indicating where the chain start |
str |
False |
first_step |
ground_truth |
None |
Absolute path to reference data |
str |
True |
ground_truth |
l5_path_old |
None |
Absolute path to Landsat-5 images coming from old THEIA format (D*H*) |
str |
False |
l5_path_old |
l8_path |
None |
Absolute path to Landsat-8 images comingfrom new tiled THEIA data |
str |
False |
l8_path |
l8_path_old |
None |
Absolute path to Landsat-8 images coming from old THEIA format (D*H*) |
str |
False |
l8_path_old |
l8_usgs_infrared_path |
None |
Absolute path to Landsat-8 images coming from USGS data |
str |
False |
l8_usgs_infrared_path |
l8_usgs_optical_path |
None |
Absolute path to Landsat-8 images coming from USGS data |
str |
False |
l8_usgs_optical_path |
l8_usgs_path |
None |
Absolute path to Landsat-8 images coming from USGS data |
str |
False |
l8_usgs_path |
l8_usgs_thermal_path |
None |
Absolute path to Landsat-8 images coming from USGS data |
str |
False |
l8_usgs_thermal_path |
last_step |
None |
The step group name indicating where the chain ends |
str |
False |
last_step |
list_tile |
None |
List of tile to process, separated by space |
str |
True |
list_tile |
logger_level |
INFO |
Set the logger level: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL |
str |
False |
logger_level |
minimum_required_dates |
2 |
required minimum number of available dates for each sensor |
int |
False |
minimum_required_dates |
nomenclature_path |
None |
Absolute path to the nomenclature description file |
str |
True |
nomenclature_path |
None |
Absolute path to the output directory |
str |
True |
||
proj |
None |
The projection wanted. Format EPSG:XXXX is mandatory |
str |
True |
proj |
region |
The column name for region indicator in`region_path` file |
str |
False |
||
region_path |
None |
Absolute path to a region vector file |
str |
False |
region_path |
True |
Before the launch of iota2, remove the content of output_path |
bool |
False |
||
s1_path |
None |
Absolute path to Sentinel-1 configuration file |
str |
False |
s1_path |
s2_l3a_output_path |
None |
Absolute path to store preprocessed data in a dedicated directory |
str |
False |
s2_l3a_output_path |
s2_l3a_path |
None |
Absolute path to Sentinel-2 L3A images (THEIA format) |
str |
False |
s2_l3a_path |
s2_output_path |
None |
Absolute path to store preprocessed data in a dedicated directory |
str |
False |
s2_output_path |
s2_path |
None |
Absolute path to Sentinel-2 images (THEIA format) |
str |
False |
s2_path |
s2_s2c_output_path |
None |
Absolute path to store preprocessed data in a dedicated directory |
str |
False |
s2_s2c_output_path |
s2_s2c_path |
None |
Absolute path to Sentinel-2 images (Sen2Cor format) |
str |
False |
s2_s2c_path |
[] |
Output spatial resolution |
list or scalar |
False |
||
None |
Absolute path to the user’s features path |
str |
False |
Notes
check_inputs
Enable the inputs verification. It can take a lot of time for large dataset. Check if region intersect reference data for instance
cloud_threshold
Indicates the threshold for a polygon to be used for learning. It use the validity count, which is incremented if a cloud, a cloud shadow or a saturated pixel is detected
compression_predictor
It has been noted that in some cases, once the features are written to disk, the raster file may be empty. If this is the case, please change the predictor to 1 or 3.
data_field
All the labels values must be different to 0. It is recommended to use a continuous range of values but it is not mandatory. Keep in mind that the final product type is detected according to the maximum label value. Try to keep values between 1 and 255 to avoid heavy products.
output_path
Absolute path to the output directory.It is recommended to have one directory per run of the chain
region_field
This column in the database must contains string which can be converted into integers. For instance ‘1_2’ does not match this condition. It is mandatory that the region identifiers are > 0.
remove_output_path
Before the launch of iota2, remove the content of output_path. Only if the first_step is init and the folder name is valid
spatial_resolution
The spatial resolution expected.It can be provided as integer or float,or as a list containing two values for non squared resolution
user_feat_path
Absolute path to the user’s features path. They must be stored by tiles
obia
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
None |
define the working size batch in number of pixels |
int |
False |
||
False |
enable the use of entire segment for learning |
bool |
False |
||
None |
filename for input segmentation |
str |
False |
||
None |
define an order for region intersection |
list |
False |
||
[‘mean’] |
list of stats used for train and classification |
list |
False |
Notes
buffer_size
this parameter is used to avoid memory issue.In case of a large temporal series,i.e one year of Sentinel2 images a recommended size is 2000.For lower number of date, the buffer size can be increased.If buffer_size is larger than the image size, the whole image will be processed in one time.
full_learn_segment
if True: keep each segment which intersect the learning samples. If False, the segments are clipped with learning polygon shape
obia_segmentation_path
If parameter is None then a segmentation for each tile is processed using SLIC algorithm
region_priority
if a list is provided, the list order is used instead of the numeric order.This option can be used in case of very unbalanced region size.
stats_used
this list accepts only five values: mean, count, min, max, std The choice of statistics used should be considered in relation to the number of dates used.Because of the constraints on vector formats, one must think about the number of features this creates: nb_stats_choosen * nb_bands * nb_dates. Too many spectral bands can cause an error in the execution of the string.
pretrained_model
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
boundary_buffer |
None |
List of boundary buffer size |
list |
False |
boundary_buffer |
None |
Predict function name |
str |
False |
||
None |
Algorythm nature (classification or regression) |
str |
False |
||
None |
Serialized object containing the model |
str |
False |
||
/path/to/iota2/sources |
Absolute path to the python module |
str |
False |
Notes
function
This function must have the imposed signature. It not accept any others parameters. All model dedicated parameters must be stored alongside the model.
mode
The python module must contains the predict function It must handle all the potential dependencies and import related to the correct model instanciation
model
In the configuration file, the mandatory keys $REGION and $SEED must be present as they are replaced by iota2. In case of only one region, the region value is set to 1. Look at the documentation about the model constraint.
module
The python module must contains the predict function It must handle all the potential dependencies and import related to the correct model instanciation
sensors_data_interpolation
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
True |
Enable the use of start_date and end_date |
bool |
False |
||
use_additional_features |
False |
enable the use of additional features |
bool |
False |
use_additional_features |
use_gapfilling |
True |
enable the use of gapfilling (clouds/temporal interpolation) |
bool |
False |
use_gapfilling |
False |
write temporary files |
bool |
False |
Notes
auto_date
If True, iota2 will automatically guess the first and the last interpolation date. Else, start_date and end_date of each sensors will be used
write_outputs
Write the time series before and after gapfilling, the mask time series, and also the feature time series. This option required a large amount of free disk space.
simplification
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
None |
number of lines and columns of the serialization process |
int |
False |
||
None |
inland water limit shapefile |
str |
False |
||
None |
configuration file which describe nomenclature |
configuration file which describe nomenclature |
False |
||
20 |
Resampling size of input classification raster (projection unit) |
int |
False |
||
None |
MMU for the first regularization |
int |
False |
||
None |
MMU for the second regularization |
int |
False |
Notes
gridsize
This parameter is useful only for large areas for which vectorization process can not be executed (memory limitation). By ‘serialization’, we mean parallel vectorization processes. If not None, regularized classification raster is splitted in gridsize x gridsize rasters
inland
to vectorize only inland waters, and not unnecessary sea water areas
nomenclature
This configuration file includes code, color, description and vector field alias of each class
Classes:
{
Level1:
{
"Urbain":
{
code:100
alias:"Urbain"
color:"#b106b1"
}
...
}
Level2:
{
"Urbain dense":
{
code:1
alias:"UrbainDens"
color:"#ff00ff"
parent:100
}
...
}
}
rssize
OSO-like vectorization requires a resampling step in order to regularize and decrease raster polygons number, If None, classification is not resampled
umc1
It is an interface of parameter ‘-st’ of gdal_sieve.py function. If None, classification is not regularized
umc2
OSO-like vectorization process requires 2 successive regularization, if you need a single regularization, let this parameter to None
slurm
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
None |
Feed the sbatch parameter ‘account’ |
str |
False |
Notes
account
The section ‘slurm’ is only available once the Slurm orchestrator is involved in jobs submission.
task_retry_limits
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
allowed_retry |
0 |
allow dask to retry a failed job N times |
int |
False |
allowed_retry |
4 |
the maximum number of CPU available |
int |
False |
||
16.0 |
the maximum amount of RAM available. (gB) |
float |
False |
Notes
maximum_cpu
the amount of cpu will be doubled if the task is killed due to ram overconsumption until maximum_cpu or allowed_retry are reach
maximum_ram
the amount of RAM will be doubled if the task is killed due to ram overconsumption until maximum_ram or allowed_retry are reach
userFeat
Name |
Default Value |
Description |
Type |
Mandatory |
Name |
---|---|---|---|---|---|
arbo |
/* |
input folder hierarchy |
str |
False |
arbo |
patterns |
ALT,ASP,SLP |
key name for detect the input images |
str |
False |
patterns |