You are looking the documentation of a development version. The release version is available at master.

All configuration parameters

Name

Default Value

Description

Type

Name

account

None

Feed the sbatch parameter ‘account’

str

account

acor_feat

False

Apply atmospherically corrected features

bool

acor_feat

additional_features

OTB’s bandmath expressions, separated by comma

str

additional_features

allowed_retry

0

allow dask to retry a failed job N times

int

allowed_retry

arbo

/*

input folder hierarchy

str

arbo

auto_date

True

Enable the use of start_date and end_date

bool

auto_date

boundary_buffer

None

List of boundary buffer size

list

boundary_buffer

boundary_comparison_mode

False

Enable classification comparison

bool

boundary_comparison_mode

boundary_exterior_buffer_size

0

Buffer size outside the region

int

boundary_exterior_buffer_size

boundary_fusion_epsilon

0.0

Threshold to avoid weights equals to zero

float

boundary_fusion_epsilon

boundary_interior_buffer_size

0

Buffer size inside the region

int

boundary_interior_buffer_size

buffer_size

None

define the working size batch in number of pixels

int

buffer_size

builders_class_name

[‘I2Classification’]

The name of the class defining the builder

list

builders_class_name

builders_paths

/path/to/iota2/sources

The path to user builders

str

builders_paths

check_inputs

True

Enable the inputs verification

bool

check_inputs

chunk_size_mode

split_number

The chunk split mode, currently the choice is ‘split_number’

str

chunk_size_mode

chunk_size_x

50

number of cols for one chunk

int

chunk_size_x

chunk_size_y

50

number of rows for one chunk

int

chunk_size_y

classif_mode

separate

‘separate’ or ‘fusion’

str

classif_mode

classifier

None

otb classification algorithm

str

classifier

cloud_threshold

0

Threshold to consider that a pixel is valid

int

cloud_threshold

color_table

None

Absolute path to the file that links the classes and their colours

str

color_table

compression_algorithm

ZSTD

Set the gdal compression algorithm to use: NONE, LZW, ZSTD (default).All rasters write with OTB will be compress with the chosen algorithm.

str

compression_algorithm

compression_predictor

2

Set the predictor for LZW and ZSTD compression: 1 (no predictor), 2 (horizontal differencing, default)

int

compression_predictor

concat_mode

True

enable the use of all features

bool

concat_mode

copy_input

True

use spectral bands as features

bool

copy_input

cross_validation_folds

5

the number of k-folds

int

cross_validation_folds

cross_validation_grouped

False

bool

cross_validation_grouped

cross_validation_parameters

{}

dict

cross_validation_parameters

data_field

None

Field name indicating classes labels in ground_thruth

str

data_field

data_mode_access

gapfilled

choose which data can be accessed in custom features

str

data_mode_access

deep_learning_parameters

{}

deep learning parameter description is available here

dict

deep_learning_parameters

dempstershafer_mob

precision

Choose the dempster shafer mass of belief estimation method

str

dempstershafer_mob

enable_boundary_fusion

False

Enable the boundary fusion

bool

enable_boundary_fusion

enable_probability_map

False

Produce the probability map

bool

enable_probability_map

enable_sensor_gapfilling

False

Enable or disable gapfilling for landsat 8 and 9 IR data

bool

enable_sensor_gapfilling

end_date

The last date of interpolated image time series : YYYYMMDD format

str

end_date

exogeneous_data

None

Path to a Geotiff file containing additional data to be used in external features

str

exogeneous_data

external_features_flag

False

enable the external features mode

bool

external_features_flag

extract_bands

False

bool

extract_bands

features

[‘NDVI’, ‘NDWI’, ‘Brightness’]

List of additional features computed

list

features

features_from_raw_dates

False

learn model from raw sensor’s date (no interpolations)

bool

features_from_raw_dates

features_path

None

input directory containing features as rasters

str

features_path

fill_missing_dates

False

fill raw data with no data if dates are missing

bool

fill_missing_dates

first_step

None

The step group name indicating where the chain start

str

first_step

force_standard_labels

False

Standardize labels for feature extraction

bool

force_standard_labels

from_rasterdb_resampling_method

nn

output features type choice among gdalwarp.html#cmdoption-gdalwarp-r. Enabled if chain.rasters_grid_path is set

str

from_rasterdb_resampling_method

from_vectordb_resampling_method

near

output features type choice among gdalwarp.html#cmdoption-gdalwarp-r. Enabled if chain.grid is set

str

from_vectordb_resampling_method

full_learn_segment

False

enable the use of entire segment for learning

bool

full_learn_segment

function

None

Predict function name

str

function

functions

None

function list to be used to compute features

str/list

functions

fusion_options

-nodatalabel 0 -method majorityvoting

OTB FusionOfClassification options for voting method involved if classif_mode is set to ‘fusion’

str

fusion_options

fusionof_all_samples_validation

False

Enable the use of all reference data to evaluate the fusion raster

bool

fusionof_all_samples_validation

fusionofclassification_all_samples_validation

False

Enable the use of all reference data to validate the classification merge

bool

fusionofclassification_all_samples_validation

generate_final_probability_map

False

Enable the mosaicing of probabilities maps.

bool

generate_final_probability_map

grid

None

input grid to fit

str

grid

gridsize

None

number of lines and columns of the serialization process

int

gridsize

ground_truth

None

Absolute path to reference data

str

ground_truth

inland

None

inland water limit shapefile

str

inland

keep_bands

[‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]

The list of spectral bands used for classification

list

keep_bands

keep_duplicates

True

use ‘rel_refl’ can generate duplicated feature (ie: NDVI), set to False remove these duplicated features

bool

keep_duplicates

keep_runs_results

True

bool

keep_runs_results

keyword_arguments

{}

keyword arguments to be passed to model

dict

keyword_arguments

l5_path_old

None

Absolute path to Landsat-5 images coming from old THEIA format (D*H*)

str

l5_path_old

l8_path

None

Absolute path to Landsat-8 images comingfrom new tiled THEIA data

str

l8_path

l8_path_old

None

Absolute path to Landsat-8 images coming from old THEIA format (D*H*)

str

l8_path_old

l8_usgs_infrared_path

None

Absolute path to Landsat-8 images coming from USGS data

str

l8_usgs_infrared_path

l8_usgs_optical_path

None

Absolute path to Landsat-8 images coming from USGS data

str

l8_usgs_optical_path

l8_usgs_path

None

Absolute path to Landsat-8 images coming from USGS data

str

l8_usgs_path

l8_usgs_thermal_path

None

Absolute path to Landsat-8 images coming from USGS data

str

l8_usgs_thermal_path

last_step

None

The step group name indicating where the chain ends

str

last_step

learning_samples_extension

sqlite

learning samples file extension, possible values are ‘sqlite’ and ‘csv’

str

learning_samples_extension

list_tile

None

List of tile to process, separated by space

str

list_tile

logger_level

INFO

Set the logger level: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL

str

logger_level

max_nn_inference_size

None

maximum batch inference size

int

max_nn_inference_size

maximum_cpu

4

the maximum number of CPU available

int

maximum_cpu

maximum_ram

16.0

the maximum amount of RAM available. (gB)

float

maximum_ram

merge_final_classifications

False

Enable the fusion of classifications mode, merging all run in a unique result.

bool

merge_final_classifications

merge_final_classifications_method

majorityvoting

Indicate the fusion of classification method: ‘majorityvoting’ or ‘dempstershafer’

str

merge_final_classifications_method

merge_final_classifications_ratio

0.1

Percentage of samples to use in order to evaluate the fusion raster

float

merge_final_classifications_ratio

merge_final_classifications_undecidedlabel

255

Indicate the label for undecision case during fusion

int

merge_final_classifications_undecidedlabel

merge_run

False

Enable the fusion of regression mode, merging all run in a unique result.

bool

merge_run

merge_run_method

mean

Indicate the fusion of regression method: ‘mean’ or ‘median’

str

merge_run_method

merge_run_ratio

0.1

Percentage of samples to use in order to evaluate the fusion raster

float

merge_run_ratio

minimum_required_dates

2

required minimum number of available dates for each sensor

int

minimum_required_dates

mode

None

Algorythm nature (classification or regression)

str

mode

mode_outside_regionsplit

0.1

Set the threshold for split huge model

float

mode_outside_regionsplit

model

None

Serialized object containing the model

str

model

model_type

None

machine learning algorthm’s name

str

model_type

module

/path/to/iota2/sources

absolute path for user source code

str

module

no_data_value

-10000

value considered as no_data in features map mosaic (‘I2FeaturesMap’ builder name)

int

no_data_value

no_label_management

maxConfidence

Method for choosing a label in case of fusion

str

no_label_management

nomenclature

None

configuration file which describe nomenclature

configuration file which describe nomenclature

nomenclature

nomenclature_path

None

Absolute path to the nomenclature description file

str

nomenclature_path

number_of_chunks

50

the expected number of chunks

int

number_of_chunks

obia_segmentation_path

None

filename for input segmentation

str

obia_segmentation_path

otb_classifier_options

None

OTB option for classifier.If None, the OTB default values are used

dict

otb_classifier_options

out_worldclim_dtype

float32

output worlclim data type, ie : ‘uint16’, ‘float32’.

np.dtype

out_worldclim_dtype

out_worldclim_rescale_range

None

rescale worldclim data between 0 and max(np.dtype) at run time for RAM usage purpose.

np.dtype

out_worldclim_rescale_range

output_features_pix_type

float

output features type choice among uint8/uint16/int16/uint32/int32/float/double.

str

output_features_pix_type

output_name

None

temporary chunks are written using this name as prefix

str

output_name

output_path

None

Absolute path to the output directory

str

output_path

output_statistics

True

output_statistics

bool

output_statistics

padding_size_x

0

The padding for chunk

int

padding_size_x

padding_size_y

0

The padding for chunk

int

padding_size_y

patterns

ALT,ASP,SLP

key name for detect the input images

str

patterns

proj

None

The projection wanted. Format EPSG:XXXX is mandatory

str

proj

random_seed

None

Fix the random seed for random split of reference data

int

random_seed

rasters_grid_path

None

input grid to fit

str

rasters_grid_path

ratio

0.5

Should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split.

float

ratio

region_field

region

The column name for region indicator in`region_path` file

str

region_field

region_path

None

Absolute path to a region vector file

str

region_path

region_priority

None

define an order for region intersection

list

region_priority

rel_refl

False

compute relative reflectances by the red band

bool

rel_refl

remove_output_path

True

Before the launch of iota2, remove the content of output_path

bool

remove_output_path

resampling_bco_radius

2

otb radius for bicubic interpolation.

int

resampling_bco_radius

rssize

20

Resampling size of input classification raster (projection unit)

int

rssize

runs

1

Number of independent runs processed

int

runs

s1_dir

None

Sentinel1 data directory

str

s1_dir

s1_path

None

Absolute path to Sentinel-1 configuration file

str

s1_path

s2_l3a_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

s2_l3a_output_path

s2_l3a_path

None

Absolute path to Sentinel-2 L3A images (THEIA format)

str

s2_l3a_path

s2_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

s2_output_path

s2_path

None

Absolute path to Sentinel-2 images (THEIA format)

str

s2_path

s2_s2c_output_path

None

Absolute path to store preprocessed data in a dedicated directory

str

s2_s2c_output_path

s2_s2c_path

None

Absolute path to Sentinel-2 images (Sen2Cor format)

str

s2_s2c_path

sample_augmentation

{‘activate’: False, ‘bins’: 10}

OTB parameters for sample augmentation

dict

sample_augmentation

sample_management

None

Absolute path to a CSV file containing samples transfert strategies

str

sample_management

sample_selection

{‘sampler’: ‘random’, ‘strategy’: ‘all’}

OTB parameters for sampling the validation set

dict

sample_selection

sample_validation

{‘sampler’: ‘random’, ‘strategy’: ‘all’}

OTB parameters for sampling the validation set

dict

sample_validation

sampling_validation

False

Enable sampling validation

bool

sampling_validation

spatial_resolution

[]

Output spatial resolution

list or scalar

spatial_resolution

split_ground_truth

True

Enable the split of reference data

bool

split_ground_truth

srtm_path

None

Path to a directory containing srtm data

str

srtm_path

standardization

True

bool

standardization

start_date

The first date of interpolated image time series : YYYYMMDD format

str

start_date

stats_used

[‘mean’]

list of stats used for train and classification

list

stats_used

temporal_resolution

10

The temporal gap between two interpolations

int

temporal_resolution

tile_field

None

column name in ‘grid’ containing tile’s name.

str

tile_field

umc1

None

MMU for the first regularization

int

umc1

umc2

None

MMU for the second regularization

int

umc2

use_additional_features

False

enable the use of additional features

bool

use_additional_features

use_gapfilling

True

enable the use of gapfilling (clouds/temporal interpolation)

bool

use_gapfilling

user_feat_path

None

Absolute path to the user’s features path

str

user_feat_path

validity_threshold

1

threshold above which a training pixel is considered valid

int

validity_threshold

worldclim_path

None

Path to a directory containing world clim data

str

worldclim_path

write_outputs

False

write temporary files

bool

write_outputs

write_reproject_resampled_input_dates_stack

True

flag to write of resampled stack image for each date

bool

write_reproject_resampled_input_dates_stack