iota2.learning.train_sklearn

Functions

can_perform_cv(cv_paramerters, clf)

check if the cross validation can be done

cast_config_cv_parameters(config_cv_parameters)

cast cross validation parameters coming from config to a compatible sklearn type

force_proba(sk_classifier)

force the classifier model to be able of generate proabilities

get_learning_samples(learning_samples_dir, ...)

get sorted learning samples files from samples directory

model_name_to_function(model_name)

cast the model'name from string to sklearn object

save_cross_val_best_param(output_path, clf)

save cross validation parameters in a text file

sk_learn(dataset_path, features_labels, ...)

Train a model thanks to scikit-learn