iota2.learning.pytorch.torch_nn_bank

Module containing all natively usable pytorch neural networks in iota2

Functions

abstractmethod(funcobj)

A decorator indicating abstract methods.

reduce(function, sequence[, initial])

Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value.

verify_import(module_path)

Check if a module can be imported

Classes

ABC()

Helper class that provides a standard way to create an ABC using inheritance.

ABCMeta(name, bases, namespace, **kwargs)

Metaclass for defining Abstract Base Classes (ABCs).

ANN(nb_features, nb_class[, layer, ...])

Same as ANN but reshape it's inputs

Iota2NeuralNetwork(nb_features, nb_class[, ...])

every neural networks provided by iota2 must inherit from this one to ensure some specific signatures.

Iota2NeuralNetworkFactory()

factory to a Iota2NeuralNetwork object

LTAE(*args, **kwargs)

LTAEClassifier(nb_features, nb_class[, ...])

SITS classifier using a transformer encoder

MLPClassifier(nb_features, nb_class[, ...])

Simple Multi Layer Perceptron for Satellite Image Time Series classification

MaskedAttention(nb_features, nb_bands)

Attention layer using validity masks as context vector

NeuralNetworkMeta(name, bases, namespace, ...)

metaclass which check every abstract methods definition

SelfAttention(input_size, output_size)

Self attention layer using dot product and addition

SimpleSelfAttentionClassifier(nb_features, ...)

SITS classifier using validity masks and self attention.